Naming Inorganic Compounds

common names systematic names

Molecular Formula

Common name

Systematic name

AgCl

Lunar caustic Silver chloride

 H_2SO_4

Oil of vitriol Sulfuric acid

 $MgSO_4$

Epsom salts Magnesium sulfate

 H_2O

Water

Dihydrogen Oxide

Nomenclature

When naming chemical compounds we distinguish between

Organic compounds

- compounds containing carbon.

Exceptions: CO, CO₂, CS₂, CN⁻, CO₃²⁻, HCO₃⁻, H₂CO₃

Inorganic compounds

- all other compounds

we can break the naming of inorganic compounds into four categories:

Ionic compounds

Molecular compounds

Acids and Bases

Hydrates

Naming Ionic Compounds

Naming binary ionic compounds

binary compounds contain two elements

and are named as two words

first word is name of cation

second word is first part of name of anion followed by -ide

Examples of binary ionic compounds of metals

sodium bromide: NaBr Na+Br

calcium oxide: CaO Ca²⁺O²⁻

barium chloride: BaCl₂ Ba²⁺2Cl⁻

aluminum oxide: Al_2O_3 $2Al^{3+} 3O^{2-}$

number of positive charges must equal number of negative charges

Example

Write the formulas for the following compounds:

(a) sodium sulfide

2 Na+

S²-

Answer: Na₂S

binary compounds

contains only two different elements

Na₂S

Example

But some metals can form more than one type of cation

Often, but not always, a transition metal

Binary compounds of metals (cont'd)

When metal can form more than one type of cation, indicate charge by Roman numeral in parenthesis

MnO manganese(II) oxide

Mn₂O₃ manganese(III) oxide

MnO₂ manganese(IV) oxide

use of the suffixes -ous and -ic is discouraged

Example

Write the formulas for the following compounds:

(a) tin(II) fluoride

Sn²⁺

K-

Answer: SnF₂

Example

Write the formulas for the following compounds:

(a) mercury(II) oxide

Hg²⁺

 O^{2}

Answer: HgO

Polyatomic Ions

molecules with a charge

Polyatomic Ions

$$(CO_3^{2-})$$
 carbonate (CrO_4^{2-}) chromate (OH^-) hydroxide (NO_3^-) nitrate $(Cr_2O_7^{2-})$ dichromate (ClO_3^-) chlorate

bromate

 (BrO_3^-)

Iodate

 (IO_3^-)

peroxide

 O_2^{2-}

acetate

 $C_2H_3O_2^-$

H O | || H - C - C - O -| H

Example

Name the following ionic compounds:

(a) $Cu(NO_3)_2$

Cu²⁺

2NO₃-

Answer: copper(II)nitrate

Naming Molecular Compounds

Definition

Molecule — is an aggregate of at least two atoms in a definite arrangement held together by chemical forces. structure bonds

Ionic Compounds

discrete molecules are not present, so ionic compounds are represented by their empirical formulas

some times referred to as formula units

NaC1

Molecular formula

shows the exact number of atoms of each element in the smallest unit of a substance

 $C_6H_{12}O_6$

structural formula

uses symbols and bonds to show relative positions of the atoms

Molecular Compounds

Electrons are shared by the atoms.

Covalent Bonds

Electrons however are not shared equally.

decreasing electronegativity

Increasing electronegativity

Group	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1A	2A		3B	4B	5B	6B	7B		8B		1B	2B	3A	4A	5A	6A	7A	8A
Period																			
1	1 <u>H</u>			(XVQ	en	is m	10re	e ele	ectro	oneg	zativ	/e ~						2 <u>He</u>
2	3 <u>Li</u>	4 <u>Be</u>)	••••					3110	,		5 <u>B</u>	C	7 <u>N</u>	08	9 <u>F</u>	10 <u>Ne</u>
3	11 <u>Na</u>	12 <u>Mg</u>												13 <u>Al</u>	14 <u>Si</u>	15 P	16 <u>S</u>	17 <u>C1</u>	18 <u>Ar</u>
4	19 <u>K</u>	20 <u>Ca</u>		21 <u>Sc</u>	22 <u>Ti</u>	23 <u>Y</u>	24 <u>Cr</u>	25 <u>Mn</u>	26 <u>Fe</u>	27 <u>Co</u>	28 <u>Ni</u>	29 <u>Cu</u>	30 <u>Zn</u>	31 <u>Ga</u>	32 <u>Ge</u>	33 <u>As</u>	34 <u>Se</u>	35 <u>Br</u>	36 <u>Kr</u>
5	37 <u>Rb</u>	38 <u>Sr</u>		39 <u>Y</u>	40 <u>Zr</u>	41 <u>Nb</u>	42 <u>Mo</u>	43 <u>Tc</u>	44 <u>Ru</u>	45 <u>Rh</u>	46 <u>Pd</u>	47 <u>A</u> g	48 <u>Cd</u>	49 <u>In</u>	50 <u>Sn</u>	51 <u>Sb</u>	52 <u>Te</u>	53 <u>I</u>	54 <u>Xe</u>
6	55 <u>Cs</u>	56 <u>Ba</u>	*	71 <u>Lu</u>	72 <u>Hf</u>	73 <u>Ta</u>	74 <u>W</u>	75 <u>Re</u>	76 <u>Os</u>	77 <u>Ir</u>	78 <u>Pt</u>	79 <u>Au</u>	80 <u>Hg</u>	81 <u>T1</u>	82 <u>Pb</u>	83 <u>Bi</u>	84 <u>Po</u>	85 <u>At</u>	86 <u>Rn</u>
7	87 <u>Fr</u>	88 <u>Ra</u>	**	103 <u>Lr</u>	104 <u>Rf</u>	105 <u>Db</u>	106 Sg	107 Bh	108 <u>Hs</u>	109 <u>Mt</u>	110 <u>Uun</u>	111 <u>Uuu</u>	112 <u>Uub</u>	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuc
												-							
lanth	anide	3	*	57 <u>La</u>	58 <u>Ce</u>	59 <u>Pr</u>	60 <u>Nd</u>	61 <u>Pm</u>	62 <u>Sm</u>	63 <u>Eu</u>	64 <u>Gd</u>	65 <u>Tb</u>	66 Dy	67 <u>Ho</u>	68 <u>Er</u>	69 <u>Tm</u>	70 <u>Y b</u>		
actinides			**	89 <u>Ac</u>	90 Th	91 Pa	92 U	93 <u>Np</u>	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

Molecular Compounds

Elements that are more electronegative assume an apparent negative charge (δ –).

Elements that are less electronegative assume an apparent positive charge (δ +).

Polar Covalent Bonds

The concept of *electronegativity* guides our thinking about the polarity of bonds and the polarity of molecules.

naming binary compounds of nonmetals

- 1) less electronegative element named first (and listed first in chemical formula)
- 2) more electronegative element named in usual way (with -ide suffix)
- 3) counting prefixes are used with each name

but mono is not used with first name

Greek prefixes used in naming molecular compounds

Prefix	Meaning	Prefix	Meaning		
Mono-	1	Hexa-	6		
Di-	2	Hepta-	7		
Tri-	3	Octa-	8		
Tetra-	4	Nona-	9		
Penta-	5	Deca-	10		

Examples

CO carbon monoxide

CO₂ carbon dioxide

SO₂ sulfur dioxide

SO₃ sulfur trioxide

PCl₃ phosphorus trichloride

PCl₅ phosphorus pentachloride

NO₂ nitrogen dioxide

N₂O₄ dinitrogen tetroxide

Cl₂O₇ dichlorine heptoxide

Name the following compounds

ClF₃

chlorine trifluoride

 SCl_2

sulfur dichloride

 Cl_2O_7

dichlorine heptoxide

Naming Acids and Bases

Definitions of acids and bases

Svant Arrhenius (Sweden) 1859-1927

Johannes Bronsted (Denmark) 1879-1947

G. N. Lewis (U.S.) 1875-1946

Arrhenius definitions of acids and bases

An acid dissolves in water to yield protons

$$H-X \longrightarrow H^{+}_{(aq)} + X^{-}_{(aq)}$$

Arrhenius definitions of acids and bases

An acid dissolves in water to yield protons

$$H-X \longrightarrow H^+_{(aq)} + X^-_{(aq)}$$

A base dissolves in water to yield hydroxide ions

YOH
$$\longrightarrow$$
 Y⁺_(aq) + HO⁻_(aq)

Acids and Bases

An acid is a substance that yields hydrogen ions (H⁺) when dissolved in water.

Acids that contain hydrogen, oxygen, and another element are called oxyacids.

Acids and Bases

Bases are substances that yield hydroxide Ions (HO⁻) when dissolved in water.

NaOH, KOH, Ba(OH)₂, NH₃

Naming Acids

Naming an acid depends on whether the anion contains oxygen

If the anion does not contain oxygen the acid is named with the prefix *hydro* and the suffix *--ic*

If the anion contains oxygen the acid name is formed from the root name of the anion with the suffix -ic or -ous

Names for some binary acids

Anion	Corresponding Acid
F- (fluoride)	HF (hydrofluoric acid)
Cl ⁻ (chloride)	HCl (hydrochloric acid)
Br (bromide)	HBr (hydrobromic acid)
I ⁻ (iodide)	HI (hydroiodic acid)
CN ⁻ (cyanide)	HCN (hydrocyanic acid)
S ²⁻ (sulfide)	H ₂ S (hydrosulfuric acid)

Polyatomic anions

sulfite SO_3^{2-}

sulfate SO_4^{2-}

hypochlorite ClO-

chlorite ClO₂⁻

chlorate ClO₃⁻

perchlorate ClO₄⁻

acetate anion

acetic acid

h proton

nitrate anion

nitrate anion

proton

nitric acid

sulfite SO_3^{2-} sulfurous acid H_2SO_3

HOSOOH

sulfate SO_4^{2-} sulfuric acid H_2SO_4

HOSO₂OH

sulfite SO_3^{2-} sulfurous acid H_2SO_3

HOSOOH

sulfate SO_4^{2-} sulfuric acid H_2SO_4

HOSO₂OH

perchlorate ClO₄⁻ perchloric acid HClO₄ HOClO₃

Addition of one O atom

chlorate ClO₃- chloric acid HClO₃

removal of one O atom

HOClO₂

chlorite ClO₂- chlorous acid HClO₂

removal of two O atoms

hypochlorite ClO- hypochlorous acid HOCl

a molecule starting a hydrogen?

is there a metal in the formula?

acid is there an oxygen in the formula?

non-oxyacid

use Hyro ____ic acid

oxyacid

polyatomic anion ending with *ate* ----- *ic acid*

polyatomic anion ending with *ite* ----- *ous acid*

base

name it using ionic compound rules

Hydrates

Compounds that have a specific number of water molecules attached to them

Copper(II) sulfate pentahydrate

 $CuSO_4 \cdot 5H_2O$

Copper(II) sulfate anhydrous

CuSO₄

Anhydrous - the water molecules have been driven off by heating

Naming Organic Compounds abbreviated

- Organic chemistry is the study of carbon.
- Organic chemistry has its own system of nomenclature.

The simplest hydrocarbons (compounds containing only carbon and hydrogen) are **alkanes**.

The first part of the names just listed correspond to the number of carbons (*meth-* = 1, *eth-* = 2, *prop-* = 3, etc.).

- When a hydrogen in an alkane is replaced with something else (a **functional group**, like -OH in the compounds above), the name is derived from the name of the alkane.
- The ending denotes the type of compound.
 - An alcohol ends in -ol.

