CENTRAL SANCTON OF THE SANCTON OF TH	Name
Chemical Reaction Types	Period

Identify each chemical reaction as a synthesis (combination), decomposition, single-				
replacement, double-replacement, or combustion reacti	ion			
1. $2SO_2 + O_2 \rightarrow 2SO_3$	Synthesis			

- 1. $2SO_2 + O_2 \rightarrow 2SO_3$
- Al₂(SO₄)₃ + 3Ca(OH)₂ → 2Al(OH)₃ + 3CaSO₄
- 3. $2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O$
- 4. $Mg + 2AgNO_3 \rightarrow Mg(NO_3)_2 + 2Ag$
- 5. $3Ba(NO_3)_2 + 2H_3PO_4 \rightarrow Ba_3(PO_4)_2 + 6HNO_3$
- 6. $Mg(ClO_3)_2 \rightarrow MgCl_2 + 3O_2$
- 7. $2\text{Be} + \text{O}_2 \rightarrow 2\text{BeO}$
- 2Al + 3CuSO₄ → Al₂(SO₄)₃ + 3Cu
- 9. $2PbO_2 \rightarrow 2PbO + O_2$
- $10.2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$

Complete the chemical equations for the following SYNTHESIS (COMBINATION) reactions.

- 11. $Mg + O_2 \rightarrow$
- 12. $Ca + S \rightarrow$
- 13. Na + O₂ \rightarrow
- Na + Cl₂ → 14.
- 15. $Al + O_2 \rightarrow$

Use the activity series of metals to complete the following SINGLE-REPLACEMENT reactions. Write "NR" if there is no reaction.

- 16. Zn(s) +AgNO₃→
- 17. $Au(s) + KNO_3 \rightarrow$
- 18. Al(s) + $H_2SO_4 \rightarrow$
- H₂O → 19. Cu(s) +
- 20. Al(s) + CuSO₄ →

Write the chemical equation for the complete COMBUSTION of the following compounds.

- 21. octane (C₈H₁₈) C_8H_{18}
- 22. glucose (C₆H₁₂O₆) C₆H₁₂O₆ +

Complete the chemical equations for the following DOUBLE-REPLACEMENT reactions.

- 23. Ag₂SO₄ + AlCl₃ →
- 24. CdBr₂ + Na₂S →
- 25. $Pb(NO_3)_2 + NaI \rightarrow$
- 26. NaOH + Fe(NO₃)₃ →
- 27. NaNO₃ + BaCl₂ →

Write the type of reaction on the line. Then, predict the products of each reaction to complete the chemical equation. Write the correct formulas of the products after the arrow. Write "NR" if there is no reaction.

- 28. Ag₂O →
- 29. C₄H₈ + O₂ →
- 30. Al + $N_2 \rightarrow$
- 31. Zn + CuSO₄ →
- 32. $Pb(NO_3)_2 + K_2CrO_4 \rightarrow$
- 33. Li + O₂ →
- 34. $Al_2(SO_4)_3 + Ba(OH)_2 \rightarrow$
- 35. Cu + CaCO₃ →
- 36. $C_3H_6 + O_2 \rightarrow$
- 37. Na₃PO₄ + Pb(NO₃)₂ →

Write the chemical equation for the following reactions. Remember the diatomics. Use appropriate state symbols.

- Solid silver carbonate decomposes into solid silver oxide and gaseous carbon dioxide when heated.
- Adding chlorine gas to a solution of potassium iodide gives solid iodine and a solution of potassium chloride.
- 40. Iodine crystals react with chlorine gas to form solid iodine trichloride.

Chemical R	Reaction	Types

Name	
Period	

Identify each chemical reaction as a synthesis (combination), decomposition, single-

replacement, double-replacement, or combustion reaction.

Synthesis

1. $2SO_2 + O_2 \rightarrow 2SO_3$

- 2. $Al_2(SO_4)_3 + 3Ca(OH)_2 \rightarrow 2Al(OH)_3 + 3CaSO_4$
- 3. $2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O$
- 4. $Mg + 2AgNO_3 \rightarrow Mg(NO_3)_2 + 2Ag$
- 5. $3Ba(NO_3)_2 + 2H_3PO_4 \rightarrow Ba_3(PO_4)_2 + 6HNO_3$
- 6. $Mg(ClO_3)_2 \rightarrow MgCl_2 + 3O_2$
- 7. $2Be + O_2 \rightarrow 2BeO$
- 2Al + 3CuSO₄ → Al₂(SO₄)₃ + 3Cu
- 9. $2PbO_2 \rightarrow 2PbO + O_2$
- $10.2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$

combustion Single

Doubl.

De composi. SYNTLESIS

De composition

Complete the chemical equations for the following SYNTHESIS (COMBINATION) reactions.

Use the activity series of metals to complete the following SINGLE-REPLACEMENT reactions. Write "NR" if there is no reaction.

16.
$$Zn(s) + AgNO_3 \rightarrow$$

Write the chemical equation for the complete COMBUSTION of the following compounds.

Chemi	istry I plete the chemical equations for th	he following D	OUBLE-REPL	ACEMENT re	eactions.	
23.	$3_{\text{Ag}_2\text{SO}_4} \stackrel{?}{+}_{\text{AlCl}_3} \rightarrow 6$	acl	+	Al,	-	~
24.	CdBr ₂ + Na ₂ S →	4	- 2 Na	R.		2
25.	$Pb(NO_3)_2 \stackrel{?}{+} NaI \rightarrow$ $NaOH + Fe(NO_3)_3 \rightarrow$	2) 7		200	NO_	
26.	NaOH + Fe(NO ₃) ₃ →	675	4)3+	5000	3	
27.	NaNO ₃ + BaCl ₂ →	Feloi	4 - (4	3 104	NO-	
	and and		13		3	
	the type of reaction on the line.					
	hemical equation. Write the corre	ect formulas of	the products a	fter the arrow.	Write	
"NR	" if there is no reaction.	-	2 1	. 1	. 2	Juac
28.	Ag ₂ O →		Ba (We	33)2	(
29.	C ₄ H ₈ + O ₂ →					
30.	$A1 + N_2 \rightarrow$					
31.	Zn + CuSO ₄ →					
32.	$Pb(NO_3)_2 + K_2CrO_4 \rightarrow$					
33.	Li + O ₂ →					
34.	$Al_2(SO_4)_3 + Ba(OH)_2 \rightarrow$					
35.	Cu + CaCO ₃ →					
36.	$C_3H_6 + O_2 \rightarrow$					

Write the chemical equation for the following reactions. Remember the diatomics. Use appropriate state symbols.

- Solid silver carbonate decomposes into solid silver oxide and gaseous carbon dioxide when heated.
- Adding chlorine gas to a solution of potassium iodide gives solid iodine and a solution of potassium chloride.
- 40. Iodine crystals react with chlorine gas to form solid iodine trichloride.

 $Na_3PO_4 + Pb(NO_3)_2 \rightarrow$

37.

N	0	D.	۱a	
1.4	a		ıç	

Date:

Period: 1 2 3 4 5 6 7

Types of Chemical Reaction Worksheet

Balance the reactions 1 to 6 and indicate which type of chemical reaction (synthesis, decomposition, single-displacement, double-displacement or combustion) is being represented:

NaBr + ____ Ca(OH)₂ → ___ CaBr₂ + ___ NaOH

Reaction Type : _____

2. ____ NH₃+ ____ H₂SO₄ \rightarrow ____ (NH₄)₂SO₄

Reaction Type : _____

3. ____ $C_5H_9O + ___ O_2 \rightarrow ___ CO_2 + ___ H_2O$

Reaction Type : _____

4. ___ Pb + ___ $H_3PO_4 \rightarrow$ ___ $H_2 +$ ___ $Pb_3(PO_4)_2$

Reaction Type : _____

5. ____ Li₃N + ____ NH₄NO₃ \rightarrow ___ Li_NO₃ + ___ (NH₄)₃N

Reaction Type : _____

6. ____ HBr + ___ Al(OH)₃ → ___ H₂O + ___ AlBr₃

Reaction Type :

Indicate which type of chemical reaction (synthesis, decomposition, single-displacement, double-displacement or combustion) is being represented in 7 to 20.

7. Na₃PO₄ + 3 KOH → 3 NaOH + K₃PO₄

Reaction Type

MgCl₂ + Li₂CO₃ → MgCO₃ + 2 LiCl

Reaction Type _____

9. $C_6H_{12} + 9 O_2 \rightarrow 6 CO_2 + 6 H_2O$

Reaction Type _____

10.Pb + FeSO₄ → PbSO₄ + Fe

Reaction Type _____

11. CaCO₃ → CaO + CO₂

Reaction Type _____

12.P₄ + 3 O₂ → 2 P₂O₃

Reaction Type _____

13.2 RbNO₃ + BeF₂ → Be(NO₃)₂ + 2 RbF

Reaction Type _____

14.2 AgNO₃ + Cu → Cu(NO₃)₂ + 2 Ag

Reaction Type _____

15. C₃H₆O + 4 O₂ → 3 CO₂ + 3 H₂O

Reaction Type _____

 $16.2 C_5H_5 + Fe \rightarrow Fe(C_5H_5)_2$

Reaction Type _____

17. SeCl₆ + O₂ → SeO₂ + 3Cl₂

Reaction Type _____

 $18.2 \text{ MgI}_2 + \text{Mn}(SO_3)_2 \rightarrow 2 \text{ MgSO}_3 + \text{MnI}_4$

Reaction Type

 $19.0_3 \rightarrow 0 + 0_2$

Reaction Type

20.2 NO₂ → 2 O₂ + N₂

Reaction Type

Name:	Date:	Period: 1 2 3 4 5 6 7
Types of Chemical Reaction Worksheet		
Balance the reactions 1 to 6 and indicate which ty displacement, double-displacement or combustion	ype of chemica n) is being rep	al reaction (synthesis, decomposition, single- resented:
1 NaBr + Ca(OH) ₂ → CaBr ₂ + _	2 NaOH	Reaction Type:
2. $2 \text{ NH}_3 + \text{ H}_2 \text{SO}_4 \rightarrow \text{ (NH}_4)_2 \text{SO}_4$ $2 \text{ C}_2 \text{ H}_2 + \text{ C}_2 \rightarrow \text{ CO}_2 \rightarrow \text{ CO}_2 \rightarrow \text{ CO}_2 + \text{ C}_2 \rightarrow \text{ CO}_2 + \text{ C}_2 \rightarrow \text{ CO}_2 \rightarrow \text{ CO}_2 + \text{ C}_2 \rightarrow \text{ CO}_2 \rightarrow \text$	40	Reaction Type : Synthesis
3 $C_5H_9O + O_2 \rightarrow CO_2 + I$	H ₂ O	Reaction Type:Combustion
4. 3 Pb + 2 H ₃ PO ₄ → 3 H ₂ + Pt	b ₃ (PO ₄) ₂	Reaction Type: _ Single repl
5 Li ₃ N + 3 NH ₄ NO ₃ $\rightarrow 3$ LiNO ₃ +	_ (NH ₄) ₃ N	Reaction Type: Double
6. 3 HBr + AI(OH) ₃ → 3 H ₂ O + AI	Br ₃	Reaction Type: Double
Indicate which type of chemical reaction (synthesis or combustion) is being represented in 7 to 20.		
7. Na ₃ PO ₄ + 3 KOH → 3 NaOH + K ₃ PO ₄	Reaction Ty	pe Double
8. $MgCl_2 + Li_2CO_3 \rightarrow MgCO_3 + 2 LiCl$	Read	tion Type Double
9. $C_6H_{12} + 9 O_2 \rightarrow 6 CO_2 + 6 H_2O$	Read	tion Type <u>combustion</u>
10.Pb + FeSO ₄ → PbSO ₄ + Fe	Reaction Typ	
11. CaCO ₃ → CaO + CO ₂	Reaction Typ	e Decamposition
12. P ₄ + 3 O ₂ → 2 P ₂ O ₃	Reaction Typ	e_ synthesis
13.2 RbNO ₃ + BeF ₂ → Be(NO ₃) ₂ + 2 RbF	Reaction Typ	ne_Pouble
$14.2AgNO_3+Cu\rightarrow Cu(NO_3)_2+2Ag$	Reaction Typ	oe_ single
15. $C_3H_6O + 4 O_2 \rightarrow 3 CO_2 + 3 H_2O$	Reaction Typ	e combustion
16.2 C ₅ H ₅ + Fe → Fe(C ₅ H ₅) ₂	Reaction Typ	e_ synthesis
17. SeCl ₆ + O ₂ → SeO ₂ + 3Cl ₂	Reaction Typ	e sugle
18.2 MgI ₂ + Mn(SO ₃) ₂ \rightarrow 2 MgSO ₃ + MnI ₄	Reaction Typ	e pouble,
19. O ₃ → O· + O ₂	Reaction Typ	e Pecouposited
$20.2 \text{ NO}_2 \rightarrow 2 \text{ O}_2 + \text{N}_2$	Reaction Typ	e Pacemposition

Types of Chemical Reaction Worksheet

Balance the reactions 1 to 6 and indicate which type of chemical reaction (synthesis, decomposition, single-displacement, double-displacement or combustion) is being represented:

1. \angle NaBr + ___ Ca(OH)₂ \rightarrow ___ CaBr₂ + \angle NaOH

Reaction Type Double

2. 2 NH₃+ ____ H₂SO₄ → ____ (NH₄)₂SO₄

Reaction Type Synthesis

3. ___ $C_5H_9O + ___ O_2 \rightarrow __ CO_2 + ___ H_2O$

Reaction Type : Combustion

4. $\frac{3}{2}$ Pb + $\frac{2}{1}$ H₃PO₄ $\Rightarrow \frac{3}{1}$ H₂ + Pb₃(PO₄)₂

Reaction Type : Single

5 ____Li₃N + 3 NH₄NO₃ \rightarrow 3 LiNO₃ + \cdot (NH₄)₃N

Reaction Type : Double

6. $3 \text{ HBr} + \text{Al}(OH)_3 \rightarrow 3 \text{H}_2O + \text{AlBr}_3$

Reaction Type: Double

Indicate which type of chemical reaction (synthesis, decomposition, single-displacement, double-displacement or combustion) is being represented in 7 to 20.

7. Na₃PO₄ + 3 KOH → 3 NaOH + K₃PO₄

Reaction Type Double

MgCl₂ + Li₂CO₃ → MgCO₃ + 2 LiCl

Reaction Type Double

C₆H₁₂ + 9 O₂ → 5 CO₂ + 6 H₂O

Reaction Type Combus +i

10 Pb + FeSO₄ → PbSO₄ + Fe

Reaction Type _____

11. CaCO₃ → CaO + CO₂

Reaction Type Decomposition

12.P4 + 3 O2 → 2 P2O3

13.2 RbNO₃ + BeF₂ → Be(NO₃)₂ + 2 RbF

Reaction Type Double

14.2 AgNO₃ + Cu → Cu(NO₃)₂ + 2 Ag

Reaction Type ____ 511916

15. C₂H₆O + 4 O₂ → 3 CO₂ + 3 H₂O

Reaction Type 60 M 605+101

16.2 C₅H₅ + Fe → Fe(C₅H₅)₂

Reaction Type 57174

17. SeCl₆ + O₂ → SeO₂ + 3Cl₂

Reaction Type 510916

18.2 Mgl₂ + Mn(SO₃)₂ → 2 MgSO₃ + Mnl₄

Reaction Type Dou 61-

 $19.0_3 \rightarrow 0 + 0_2$

Reaction Type DE COMPO

 $20.2 \text{ NO}_2 \rightarrow 2 \text{ O}_2 + \text{N}_2$

Reaction Type De Composition

REACTIONS IN AQUEOUS SOLUTION

Section Review

Objectives

- Describe the information found in a net ionic equation
- Predict the formation of a precipitate in a double-replacement reaction

Vocabulary

- · complete ionic equation
- · spectator ion
- net ionic equation

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

many important chemical reactions take place in,	1.
which makes up 66 percent of the human body. Reactions in water	2
are said to take place in solution.	3.
A double-replacement reaction can be written as a3,	4.
which shows dissolved ionic compounds as their free ions. Ions	5.
that appear on both sides of the equation and are not directly	6.
involved in the reaction are called4 Canceling these ions	7.
from the equation leaves the5, which indicates only those	8.
particles that take part in the reaction.	9.
and the same of th	

When balancing a net ionic equation, it is necessary to balance the electric ___6__ as well as the number of ___7__.

When mixing solutions of ions, it is possible to predict the formation of a ____8 __. This prediction can be made using the general rules for ____9 __ of ionic compounds.

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

10. A precipitate is formed when two ionic solutions are mixed.

11. Spectator ions are not part of a net ionic equation.

_ 12. Balancing the atoms in a net ionic equation will cause the charges to balance.

___ 13. A net ionic equation shows all ions present.

Part C Matching

Match each description in Column B to the correct term in Column A.

Column A

Column B

__ 14. complete ionic equation

 a. equation that indicates only the particles that take part in a reaction

__ 15. spectator ions

b. solid product of reaction in solution

_ 16. net ionic equation

c. reaction that occurs in water

17. precipitate

 d. equation that shows dissolved ionic compounds as free ions

18. aqueous reaction

 used to predict whether a precipitate will form in an aqueous reaction

19. ionic solubility rules

f. ions that do not participate in a reaction

Part D Questions and Problems

Answer the following in the space provided.

20. Identify the spectator ion(s) and write a balanced net ionic equation for this reaction.

 $Cl_2(g) + NaBr(aq) \rightarrow Br_2(l) + NaCl(aq)$

21. Predict which precipitate, if any, will form in the following reactions:

a.
$$AgNO_3(aq) + NaCl(aq) \rightarrow$$

c.
$$Fe(NO_3)_3(aq) + KCl(aq) \rightarrow$$

d.
$$Pb(NO_3)_2(aq) + HCl(aq) \rightarrow$$

Name	Name of the second seco	Date	Class	

11.3

REACTIONS IN AQUEOUS SOLUTION

Section Review

Objectives

- Describe the information found in a net ionic equation
- Predict the formation of a precipitate in a double-replacement reaction

Vocabulary

- complete ionic equation
- spectator ion
- net ionic equation

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

Many important che	mical	reactions take place in,
which makes up 66 perce	nt of	the human body. Reactions in water
are said to take place in _	2	_ solution.

A double-replacement reaction can be written as a ___3___, which shows dissolved ionic compounds as their free ions. Ions that appear on both sides of the equation and are not directly involved in the reaction are called ___4___. Canceling these ions from the equation leaves the ___5___, which indicates only those particles that take part in the reaction.

When balancing a net ionic equation, it is necessary to balance the electric ___6__ as well as the number of ___7__.

When mixing solutions of ions, it is possible to predict the formation of a ____8 __. This prediction can be made using the general rules for ____9 __ of ionic compounds.

1.	water
2.	عو ده من ح
3.	complete
4.	spectator
5.	net ionic
6.	Charge
7.	atoms
8.	solubility
9.	Solubility

11.2

TYPES OF CHEMICAL REACTIONS

Section Review

Objectives

- · Describe the five general types of reactions
- · Predict the products of the five general types of reactions

Vocabulary

- · combination reaction
- decomposition reaction
- síngle-replacement reaction
- · activity series
- · double-replacement reaction
- · combustion reaction

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

It is possible to the products of some chemical	1.
reactions. In order to do this, you must be able to recognize at least	2.
five general types of reactions. For example, in a $_$ 2 $_$ reaction,	3.
the reactants are two or more3 and/or compounds and	4
there is always a4 product. In a5 reaction, a single	5
compound is broken down into two or more simpler substances.	6
In a6 reaction, the reactants and products are an	7
element and a compound. The7 can be used to predict	8
whether most single-replacement reactions will take place.	9
A8 reaction involves the exchange of ions between two	10
compounds. This reaction generally takes place between two ionic	11.
compounds in9 solution. One of the reactants in a	12
combustion reaction is The products of the complete	
combustion of a hydrocarbon are11 and12	

11.2

TYPES OF CHEMICAL REACTIONS

Section Review

Objectives

- Describe the five general types of reactions
- Predict the products of the five general types of reactions

Vocabulary

- · combination reaction
- decomposition reaction
- single-replacement reaction
- · activity series
- · double-replacement reaction
- combustion reaction

Part A Completion

Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number.

It is possible to1 the products of some chemical	1. predict
reactions. In order to do this, you must be able to recognize at least	
five general types of reactions. For example, in a2 reaction,	3. Elevents
the reactants are two or more 3 and/or compounds and	4. Single
there is always a 4 product. In a 5 reaction, a single	5. Decemposition
compound is broken down into two or more simpler substances.	6. Single Rephe
In a6 reaction, the reactants and products are an	7. Activity ser.
element and a compound. The7 can be used to predict	8. Double
whether most single-replacement reactions will take place.	9. 900005
A 8 reaction involves the exchange of ions between two	10.
compounds. This reaction generally takes place between two ionic	11. H20
compounds in 9 solution O- 51	12. 602
combustion reaction is10 The products of the complete	
combustion of a hydrocarbon are11 and12	

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

13. In a decomposition reaction, there is a single reactant.

14. The activity series of metals can be used to predict products in doublereplacement reactions.

15. Carbon dioxide and water are the products of the combustion of hexane (C6H14).

16. A nonmetal can replace another nonmetal from a compound in a single-replacement reaction.

17. One of the products of a double-replacement reaction is a gas that bubbles out of the mixture.

Part C Matching

Match each description in Column B to the correct term in Column A.

Column A

18. combination reaction

19. decomposition reaction

20. single-replacement reaction

21. combustion reaction

Column B

- a. reaction in which atoms of one element replace atoms of a second element in a compound
- b. a reaction in which two or more substances combine to form a single substance
- c. reaction of a compound with oxygen to produce energy
- d. reaction in which a single compound is broken down into two or more products

Part D Questions and Problems

Answer the following in the space provided.

22. Identify the type of each of the following reactions.

a. $2C_6H_{14}(l) + 19O_2(g) \rightarrow 12CO_2(g) + 14H_2O(g)$ b. $2Fe(s) + 3Br_2(l) \rightarrow 2FeBr_3(s)$

(anbustion

23. Complete and balance the following equation. What must be true of one of the products?

 $Li_3PO_4 + Zn(NO_3)_2 \rightarrow$

PO4 + 3 Zn (Nos

e produmt

PRACTICE PROBLEMS ON NET IONIC EQUATIONS

Show the total ionic and net ionic forms of the following equations. If all species are spectator ions, please indicate that no reaction takes place. Note! You need to make sure the original equation is balanced before proceeding! A set of solubility rules are given at the end of this document.

- 1. $AgNO_3(aq) + KCl(aq) \rightarrow AgCl(s) + KNO_3(aq)$
- 2. $Mg(NO_3)_2(aq) + Na_2CO_3(aq) \rightarrow MgCO_3(s) + NaNO_3(aq)$
- strontium bromide(aq) + potassium sulfate(aq) → strontium sulfate(s) + potassium bromide(aq)
- manganese(II)chloride(aq) + ammonium carbonate(aq) → manganese(II)carbonate(s) + ammonium chloride(aq)
- chromium(III)nitrate(aq) + iron(II)sulfate(aq) → chromium(III)sulfate(aq) + iron(II)nitrate(aq)

Please complete the following reactions, and show the total ionic and net ionic forms of the equation:

- K₃PO₄(aq) + Al(NO₃)₃(aq) →
- 7. BeI₂(aq) + Cu₂SO₄(aq) →
- 8. $Ni(NO_3)_3(aq) + KBr(aq) \rightarrow$
- cobalt(III)bromide + potassium sulfide →
- barium nitrate + ammonium phosphate →
- calcium hydroxide + iron(III)chloride →
- rubidium fluoride + copper(II)sulfate →

Solubility Rules

- 1. All salts of Group IA, and ammonium are soluble.
- 2. All salts of nitrates, chlorates and acetates are soluble.
- 3. All salts of halides are soluble except those of silver(I), copper(I), lead(II), and mercury(I).
- 4. All salts of sulfate are soluble except for barium sulfate, lead(II) sulfate, and strontium sulfate.
- 5. All salts of carbonate, phosphate and sulfite are insoluble, except for those of group IA and ammonium.
- All oxides and hydroxides are insoluble except for those of group IA, calcium, strontium and barium.
- 7. All salts of sulfides and insoluble except for those of Group IA and IIA elements and of ammonium.

1) AgNO3(2) + KC(2) -> AgC(3) + KNO3 As+ + was + k++c1 -> Agcles + k+ + was Ag+ + c1 -> Agcks) 2) Mg(NO3)2 + huz CO3 -> MgCO36)+2NaNg Mg2+ 2 Nog + 2 Not + cog = -> Mg co3 (5) + 2Nx+ + 2Ng Mg2+ + C03- -> Mg C03 (5) 3) S-Brz + Kz Soy -> S-Soys + 2KBr 51 = + 281 + 2k+ + 502 -> 5-504(s) + 2k+ + 2Br 5-57 + 50/2- -> 2- 504(2)

4) $M_{\Lambda}Cl_{2} + (NH_{4})_{2}CO_{3} \rightarrow M_{\Lambda}CO_{3} + 2NH_{4}C$ $M_{\Lambda}^{21} + 2Cl^{-} + 2NH_{4}^{+} + CO_{3}^{2-} \rightarrow M_{\Lambda}CO_{3}(5)$ $M_{\Lambda}^{21} + CO_{3}^{2-} \rightarrow M_{\Lambda}CO_{3}(5)$ $F) C_{-}(NO_{3})_{3} + Fe SO_{4} \rightarrow NR$

6) k3 Pay + Al(No3) 3 -> Al Poys + 3K No3
3K+ + Pay 3-+ Al 24 + 3NO5 ->
Al Poy(s) + 3K+ + 3NO3

Al Poy(s) + 3K+ + 3NO3

Al 3+ + Pay 3--> Al Poy(s)

9)2CoBr3 + 3k2S -> Co253 + 6KBr 2Co34 + 6Br + 6K+ + 352- -> Co253(5) + 6K+ + 6B-2Co3+ + 35° -> Co253(5) 10) 3Ba(NO3) 2 +2(NH4) 3 PO4 -> Baz (PO4) 2 (5) + 6 N Hu NO3 3Be + 6 NO3 + 6 NH4+ 2 PO4 -> Baz (PO4) 2 (5) + 6 NB + 6 NH4 382+ 28043-> Baz (Par) 2 (S)

9)2CoBr3 + 3k2S -> Co253 + 6KBr 2Co34 + 6Br + 6K+ + 352- -> Co253(5) + 6K+ + 6B-20034 + 35° -> (0253(S) 10) 3Ba(NO3) 2 +2(NH4) 3 PO4 -> Baz (PO4) Z (5) + 6 N Hu NO3 3Be + 6 NO3 + 6 NH+ + 2 POy 3-> Baz(PO4) 2 (5) + 6 NB + 6 NH4 382+ 28043-> Baz (Par) 2 (S) $2Fe(OH)_{2} + 2FeCl_{3} \rightarrow 2Fe(OH)_{3} + 3CaCl_{2}$ $2Ca^{21} + 6OH^{-} + 2Fe^{3+} + 6Cl^{-} \rightarrow 2Fe(OH)_{3}(S) + 3Ca^{21} + 6Cl^{-} \rightarrow 2Fe(OH)_{3}(S) + 3Ca^{21} + 6Cl^{-}$ $2Fe^{3+} + 6OH^{-} \rightarrow 2Fe(OH)_{3}(S)$

Table 3.3 Solubility characteristics of ionic compounds in water at 25°C

- 1. All alkali metal (Group 1A) compounds are soluble.
- All ammonium (NH₄⁺) compounds are soluble.
- All compounds containing nitrate (NO₃), chlorate (ClO₃), and perchlorate (ClO₄) are soluble.
- Most hydroxides (OH⁻) are insoluble. The exceptions are the alkali metal hydroxides and barium hydroxide [Ba(OH)₂]. Calcium hydroxide [Ca(OH)₂] is slightly soluble.
- Most compounds containing chlorides (Cl⁻), bromides (Br⁻), or iodides (I⁻) are soluble. The
 exceptions are those containing Ag⁺, Hg₂²⁺, and Pb²⁺.
- All carbonates (CO₃²), phosphates (PO₄³), and sulfides (S²) are insoluble; the exceptions are those of alkali metals and the ammonium ion.
- Most sulfates (SO₄²) are soluble. Calcium sulfate (CaSO₄) and silver sulfate (Ag₂SO₄) are slightly soluble. Barium sulfate (BaSO₄), mercury(II) sulfate (HgSO₄), and lead sulfate (PbSO₄) are insoluble.

Identify each of the following substances as a strong electrolyte, a weak electrolyte, or a nonelectrolyte: (a) H₂O, (b) KCl, (c) HNO₃, (d) CH₃COOH, (e) C₁₂H₂₂O₁₁, (f) Ba(NO₃)₂, (g) Ne, (h) NH₃, (i) NaOH.

Characterize the following compounds as soluble or insoluble in water: (a) Ca₃(PO₄)₂, (b) Mn(OH)₂, (c) AgClO₃, (d) K₂S, (e) CaCO₃, (f) ZnSO₄, (g) Hg(NO₃)₂, (h) HgSO₄, (i) NH₄ClO₄.

Predict the result of each of the following reactions.

a.
$$HF(aq) + Hg_2(NO_3)_2(aq) \rightarrow$$

b.
$$LiI(aq) + AgNO_3(aq) \rightarrow$$

c.
$$K_2S(aq) + C_0(CH_3COO)_2(aq) \rightarrow$$

d. NaOH(aq) +
$$Cr_2(SO_4)_3(aq) \rightarrow$$

work sheet #1

1) A	non /very u	veak	40
B	kcl stron	5.	
c	HNO3	STRONG	
P	CH 3 EOH	weak	
E	Sugar	101	
F	Ba (2003)2	strong	
6	Ne	ron	
H	NHS	weak	
I	NaoH	streng	
	Caz (Par)z	Ins	cl.
8	MA (OH) 2	Ing	sl.
c	AS 0103	501	
D	k25	501	
E	cacoz	Ins	ol.
F	Zn 504°	Sol	
6	49 (abs) 2		
H	Ha say	Jas	
I	NY SOU	Se	

 3^{a} $2HF_{(az)} + H_{32}(av_{3})_{(az)} = 3$ $H_{32}F_{2(3)} + 2H NO_{3}$ Li I(2) + A3 NO3 (2) -> Ag I (5) + L: NO3 (42) K25(2) + Co (CH3 COO) 2(2) ->

Co5(3) + 2 K CH3 COO)
(aq 6 Na OH (92) + C+2 (504) 3 (22) 3 Na, 504 + 2 C+ (0H) 3 (5)

products?

$$Li_3PO_4 + Zn(NO_3)_2 \rightarrow$$

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

_ 10. A precipitate is formed when two ionic solutions are mixed.

11. Spectator ions are not part of a net ionic equation.

_ 12. Balancing the atoms in a net ionic equation will cause the charges to balance.

13. A net ionic equation shows all ions present.

Part C Matching

Match each description in Column B to the correct term in Column A.

Column A

Column B

14. complete ionic equation

 a. equation that indicates only the particles that take part in a reaction

____15. spectator ions

b. solid product of reaction in solution

___ 16. net ionic equation

c. reaction that occurs in water

____17. precipitate

 d. equation that shows dissolved ionic compounds as free ions

18. aqueous reaction

e. used to predict whether a precipitate will form in an aqueous reaction

_____19. ionic solubility rules

f. ions that do not participate in a reaction

Part D Questions and Problems

Answer the following in the space provided.

20. Identify the spectator ion(s) and write a balanced net ionic equation for this reaction.

 $Cl_2(g) + NaBr(aq) \rightarrow Br_2(l) + NaCl(aq)$

21. Predict which precipitate, if any, will form in the following reactions:

a. AgNO₃(aq) + NaCl(aq) →

b. CaCl₂(aq) + Na₂CO₃(aq) →

c. $Fe(NO_3)_3(aq) + KCl(aq) \rightarrow$

d. $Pb(NO_3)_2(aq) + HCl(aq) \rightarrow$

ne D	ate Class
AD Torre False	
art B True-False	OTT NOT
	ue, AT; sometimes true, ST; or never true, NT.
13. In a decomposition reaction, th	nere is a single reactant.
14. The activity series of metals can replacement reactions.	n be used to predict products in double-
15. Carbon dioxide and water are the hexane (C ₆ H ₁₄).	the products of the combustion of
16. A nonmetal can replace anothe single-replacement reaction.	er nonmetal from a compound in a
17. One of the products of a doubl bubbles out of the mixture.	e-replacement reaction is a gas that
art C Matching	
atch each description in Column B to the co	orrect term in Column A.
Column A	Column B
18. combination reaction	reaction in which atoms of one element replace atoms of a second element in a compound
19. decomposition reaction	 a reaction in which two or more substances combine to form a single substance
20. single-replacement reaction	 reaction of a compound with oxygen to produce energy
21. combustion reaction	 d. reaction in which a single compound is broken down into two or more products
art D Questions and Proble	ems
nswer the following in the space provided.	. (
Identify the type of each of the followin	g reactions.
a. $2C_6H_{14}(l) + 19O_2(g) \rightarrow 12CO_2(g) + 1$	b. 2Fe(s) + 3Br ₂ (l) → 2FeBr ₃ (s) Combine Syftesis Combine
combustion	Sy tresis / commin
 Complete and balance the following eq products? 	
$\text{Li}_3\text{PO}_4 + \text{Zn}(\text{NO}_3)_2 \rightarrow$	(pa.) 1 4 6 4: NO

Part B True-False

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

10. A precipitate is formed when two ionic solutions are mixed.

11. Spectator ions are not part of a net ionic equation.

12. Balancing the atoms in a net ionic equation will cause the charges to balance.

13. A net ionic equation shows all ions present.

Part C Matching

Match each description in Column B to the correct term in Column A.

Column A

14. complete ionic equation

15. spectator ions

16. net ionic equation

17. precipitate

18. aqueous reaction

29. ionic solubility rules

Column B

- a. equation that indicates only the particles that take part in a reaction
- b. solid product of reaction in solution
- c. reaction that occurs in water
- d. equation that shows dissolved ionic compounds as
- e. used to predict whether a precipitate will form in an aqueous reaction
- f. ions that do not participate in a reaction

Part D Questions and Problems

Answer the following in the space provided.

20. Identify the spectator ion(s) and write a balanced net ionic equation for this reaction.

 $Cl_2(g) + NaBr(aq) \rightarrow Br_2(l) + NaCl(aq)$

(12+2Net+2B= -> Br, +2Net +. 20(

C/2 + 2Br -> 2CI

21. Predict which precipitate, if any, will form in the following reactions:

a. AgNO₃(aq) + NaCl(aq) →

b. $CaCl_2(aq) + Na_2CO_3(aq) \rightarrow$ c. $Fe(NO_3)_3(aq) + KCl(aq) \rightarrow$

Ca CO3(5) + 2 Nacl (a2)

d. Pb(NO3)2(aq) + HCl(aq) -> PbCl2(S) + 2HNO3(2)

Name

When two solutions of ionic compounds are mixed, a solid may form. This type of reaction is called a **precipitation reaction**, and the solid produced in the reaction is known as the **precipitate**. You can predict whether a precipitate will form using a list of solubility rules such as those found in the table below. When a combination of ions is described as insoluble, a precipitate forms.

There are three types of equations that are commonly written to describe a precipitation reaction. The **molecular equation** shows each of the substances in the reaction as compounds with physical states written next to the chemical formulas. The **complete ionic equation** shows each of the compounds as separate ions if they are water soluble. Insoluble substances are not separated and these have the symbol (s) written next to them.

Notice that there are ions that are present on both sides of the reaction arrow – that is, they do not react. These ions are known as **spectator ions** and they are commonly eliminated from complete ionic equation by crossing them out. The remaining equation is known as the **net ionic equation**.

Solubility Rules Rule 1 supercedes rule 2, rule 2 supercedes rule 3, etc.

- Nitrate (NO₃) salts are soluble
- Salts containing the alkali metal ions (Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺) and the ammonium ion (NH₄⁺) are soluble
- Most chloride, bromide, and iodide salts are soluble. Notable exceptions are salts containing the ions Ag*, Pb^{2*}, Hg₂^{2*}
- Most sulfate salts are soluble. Notable exceptions are BaSO₄, PbSO₄, Hg₂SO₄ and CaSO₄.
- Most hydroxide salts are slightly soluble (insoluble). Exceptions include Ba(OH)₂, Sr(OH)₂, and Ca(OH)₂.
- Most sulfide (S²), carbonate (CO₃²), chromate (CrO₄²), and phosphate (PO₄³) salts are insoluble.

Molecular Equation:

Complete Ionic Equation:

Net Ionic Equation:

Write the <u>complete ionic equation</u> and cross out the spectator ions to give the <u>net ionic equation</u> for each of the reactions below. Include <u>physical states</u> for each species.

- 1. $LiCl() + AgNO_3() \rightarrow AgCl() + LiNO_3()$
- 2. $Na_2S() + CaCl_2() \rightarrow 2NaCl() + CaS()$
- 3. $ZnCl_2() + 2KOH() \rightarrow Zn(OH)_2() + 2KCl()$
- 4. $Na_2CO_3() + Co(NO_3)_2() \rightarrow 2NaNO_3() + CoCO_3()$
- 5. $2NaOH() + MnBr_2() \rightarrow 2NaBr() + Mn(OH)_2()$
- 6. $FeCl_3() + (NH_4)_3PO_4() \rightarrow 3NH_4Cl() + FePO_4()$

Write the net ionic equation for each of the following reactions. List all spectator ions.

- A solution of aluminum bromide, AlBr₃ reacts with a solution of sodium hydroxide, NaOH to form the precipitate aluminum hydroxide, Al(OH)₃.
- Aqueous copper (II) nitrate, Cu(NO₃)₂ reacts with aqueous potassium carbonate, K₂CO₃ forming solid copper (II) carbonate, Cu(CO₃).
- A solution of barium chloride, BaCl₂ reacts with a solution of magnesium sulfate, MgSO₄ to form the precipitate barium sulfate, BaSO₄.
- Aqueous potassium sulfide, K₂S reacts with a solution of cadmium chloride, CdCl₂ to form solid cadmium sulfide, CdS.

1) Lici + Agnos -> Agclos + cinos Lit + CIT + Agt + NOT -> Agcb, + Cit-Ng Ag+ + C1 -> Ag(16) 2 Na25 + Cacl2 -> Cas(5)+ 2Nacl 2 Nat +52-+ Ca2+ +2Cl- -> Cas 6) + 2Nat + 201 : Ca2+ + 52- -> Ca5(5) 3) Encl2 + 2 KOH -> Zn(OH)2(5) + 2 KC1 2,2++2C1+2K++20H--> Zn(04)2(5) + 2K+ +2Cj Zn21+20H- -> Zn(0H)2(S) 4) Naz CO3 + Co(NO3)2-> ZNENO3 + COCO36) Co2++ Co3--> CoCO3(s)

5) 2NaOH + MaBrz -> 2 NaBr + Mh(0H)= 2 Nat + 20H + Mn=+ + 2Br - > (5) 2Na+ +2B1- + Mn(04)2 Mn2+ + 204 -> Mn (04) 2 (5) 6) Fe Cl3 + (NH4) 3 PO4 -> FEPOY(5) + 3 NH4C(Fe3+ + 3C1 + 3 NH4+ + PO43 - -> Fe POY(5) + 3NH4+ + 5C1-Fe 34 + POy3 -> Fe POU(S) 7) AlBr 3 + 3NaOH -> A 1(0H) 35 + 3NaBr A13+ + 381 - + 3Ne+ +30H- -> A1 (OH) 3 (S) + 300 + 3BF A13+ + 30H -> A1(0H) 3 (5)

3) CU (NO3) 2 + K2 CO3 -> Cucas(s) + 2k NO3 Cu2++2NO3 + 2k++ CO3 --> Cu CO3(5) + 2k+ + 2NO3 Cu2+ + co3- -> Cucos (3) 9) Baclz + Mg sou -> Basou + Mgclz Ba2+ + 2C1 + Mg2+ + Say2 - -> Basou(5) + Mg=+ + 2C1 Ba21 + 5042- -> Ba59(5) 10) kzs + cdcl2 -> cds + zkcl 2k++52-+682+ +261- -> cds + 2k + 2cl Cd2+ + 52- -> Cd5(3)